Control Systems Engineering

Course Code	19EE3501	Year	III	Semester	Ι		
Course	Program	Branch	EEE	Course Type	Theory		
Category	Core						
Credits	3	L-T-P	3-0-0	Prerequisites	Signals and Systems		
					(19EE3303) &		
					Engineering Mathematics-		
					III (19BS1301)		
Continuous	30	Semester End	70	Total Marks:	100		
Internal		Evaluation:					
Evaluation:							

	Course Outcomes						
	Upon successful completion of the course, the student will be able to						
CO1	Classify control systems, feedback characteristics and describe some applications. (L2)						
CO2	Determine the transfer function and recognize different mathematical modeling of						
	physical systems. (L3)						
CO3	Demonstrate the time response analysis, PID controllers and investigate the stability of						
	the system in time domain. (L3)						
CO4	Use frequency response analysis to investigate the stability of the system in frequency						
	domain. (L3)						
CO 5	Analyze linear control system using the state space technique. (L4)						

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	3	3		1						3	3	1
CO2	3	3	3	3		1						3	3	1
CO3	3	3	3	3		1			1			3	3	1
CO4	3	3	3	3		1						3	3	1
CO5	3	3	3	3		1						3	3	2

	Syllabus	
Unit	Contents	Mapped
No.		CO
Ι	Introduction: Classification of control systems, open loop and closed loop control systems and their differences, Feedback characteristics, Concept of Transfer function- impulse response. Transfer function of DC servo motor – AC	CO1 CO2
	servo motor. Construction and working of synchro transmitter and receiver.	
II	Mathematical Modeling of Control Systems: Finding Transfer functions for electrical networks. Mathematical models – Differential equations of mechanical systems (Translational and Rotational), electrical systems and electrical analogous of mechanical systems. Block diagram representation by signal flow graph – reduction using Mason's gain formula.	CO2
III	Time Response Analysis & Stability: Standard test signals, Time response of first and second order systems with step input signal, time domain specifications, steady state error and static error constants. The concept of stability – Routh's stability criterion –limitations of Routh's stability, Root locus concept – construction of root loci (simple problems). P, PI, PD and PID Controllers.	CO3

IV	Frequency Response Analysis & Stability: Introduction to frequency domain specifications- correlation between time and frequency responses. Polar Plots-Stability analysis of Nyquist Plots- Bode plots – Phase margin and Gain margin. All pass and minimum phase systems.	CO4
V	State Space Analysis of LTI Systems: Concepts of state, state variables and state model, Conversion of state variable model to transfer function model and Transfer function form to state variable form (controllable canonical form), solving the time invariant state equations, State Transition Matrix and it's Properties, concepts of controllability and observability.	CO5

Learning Resources					
Text Books					
1. Automatic Control Systems- by Farid Golnaraghi and Benjamin C. Kuo - John wiley and					
son's., 9 th edition, 2010.					
2. Control Systems Engineering – by I. J. Nagrath and M. Gopal, New Age International (P)					
Limited 2009, Publishers, 5 th edition.					
3. Modern Control Engineering – by Katsuhiko Ogata – Prentice Hall of India Pvt. Ltd., 3 rd					
edition, 1998.					
Reference Books					
1. Control Systems principles and design by M.Gopal, Tata Mc Graw Hill education Pvt Ltd.,					
4 th Edition, 2012.					
2. Control Systems Engineering. by Norman S.Nise 8 th Edition – John Wiley 2019					
3. Control Systems Engineering by S.Palani, 2 nd edition, Tata Mc Graw Hill Publications, 2009.					
e- Resources & other digital material					
1. https://nptel.ac.in/courses/107/106/107106081/					
2. https://nptel.ac.in/courses/108/106/108106098/					

3. https://nptel.ac.in/courses/108/102/108102043/